3-4 Videos Guide

3-4a

- The Comparison Test:

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $b_{n} \leq a_{n}$ for all n, then $\sum a_{n}$ is also divergent.

Exercise:

- Determine whether the series converges or diverges.
$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$

3-4b

- The Limit Comparison Test:

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where c is a positive, finite number, then either both series converge or both series diverge.

- Two special cases:
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ AND if $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ AND if $\sum b_{n}$ diverges, then $\sum a_{n}$ also diverges.

Exercises:

Determine whether the series converges or diverges.
3-4c

- $\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^{3}}$

3-4d

- $\sum_{n=1}^{\infty} \frac{6^{n}}{5^{n}-1}$
- $\sum_{k=1}^{\infty} \frac{k \sin ^{2} k}{1+k^{3}}$
- $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}+2}$

